Heterogeneous text graph for comprehensive multilingual sentiment analysis: capturing short- and long-distance semantics

Author:

Mercha El Mahdi12,Benbrahim Houda1,Erradi Mohammed1

Affiliation:

1. ENSIAS, Mohammed V University in Rabat, Rabat, Morocco

2. HENCEFORTH, Rabat, Morocco

Abstract

Multilingual sentiment analysis (MSA) involves the task of comprehending people’s opinions, sentiments, and emotions in multilingual written texts. This task has garnered considerable attention due to its importance in extracting insights for decision-making across diverse fields such as marketing, finance, and politics. Several studies have explored MSA using deep learning methods. Nonetheless, a majority of these studies depend on sequential-based approaches, which focus on capturing short-distance semantics within adjacent word sequences, but they overlook long-distance semantics, which can provide more profound insights for analysis. In this work, we propose an approach for multilingual sentiment analysis, namely MSA-GCN, leveraging a graph convolutional network to effectively capture both short- and long-distance semantics. MSA-GCN involves the comprehensive modeling of the multilingual sentiment analysis corpus through a unified heterogeneous text graph. Subsequently, a slightly deep graph convolutional network is employed to acquire predictive representations for all nodes by encouraging the transfer learning across languages. Extensive experiments are carried out on various language combinations using different benchmark datasets to assess the efficiency of the proposed approach. These datasets include Multilingual Amazon Reviews Corpus (MARC), Internet Movie Database (IMDB), Allociné, and Muchocine. The achieved results reveal that MSA-GCN significantly outperformed all baseline models in almost all datasets with a p-value < 0.05 based on student t-test. In addition, such approach shows prominent results in a variety of language combinations, revealing the robustness of the approach against language variation.

Publisher

PeerJ

Reference53 articles.

1. Towards language-independent sentiment analysis;Abudawood,2018

2. Deep learning and multilingual sentiment analysis on social media data: an overview;Agüero-Torales;Applied Soft Computing,2021

3. Multilingual multi-class sentiment classification using convolutional neural networks;Attia,2018

4. An efficient deep neural architecture for multilingual sentiment analysis in twitter;Becker,2017

5. A comprehensive survey of graph embedding: problems, techniques, and applications;Cai;IEEE Transactions on Knowledge and Data Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3