Recognition of inscribed cursive Pashtu numeral through optimized deep learning

Author:

Syed Sibtain1,Khan Khalil2,Khan Maqbool13,Khan Rehan Ullah4,Aloraini Abdulrahman4

Affiliation:

1. Department of IT & CS, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, KP, Pakistan

2. Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan

3. PAF-IAST, Sino-Pak Center for Artificial Intelligence (SPCAI), Haripur, Pakistan

4. Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia

Abstract

Pashtu is one of the most widely spoken languages in south-east Asia. Pashtu Numerics recognition poses challenges due to its cursive nature. Despite this, employing a machine learning-based optical character recognition (OCR) model can be an effective way to tackle this issue. The main aim of the study is to propose an optimized machine learning model which can efficiently identify Pashtu numerics from 0–9. The methodology includes data organizing into different directories each representing labels. After that, the data is preprocessed i.e., images are resized to 32 × 32 images, then they are normalized by dividing their pixel value by 255, and the data is reshaped for model input. The dataset was split in the ratio of 80:20. After this, optimized hyperparameters were selected for LSTM and CNN models with the help of trial-and-error technique. Models were evaluated by accuracy and loss graphs, classification report, and confusion matrix. The results indicate that the proposed LSTM model slightly outperforms the proposed CNN model with a macro-average of precision: 0.9877, recall: 0.9876, F1 score: 0.9876. Both models demonstrate remarkable performance in accurately recognizing Pashtu numerics, achieving an accuracy level of nearly 98%. Notably, the LSTM model exhibits a marginal advantage over the CNN model in this regard.

Funder

The Prince Sultan University

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3