A deep learning method for the recognition of solar radio burst spectrum
Author:
Affiliation:
1. Space Engineering University, Beijing, China
2. Laboratory for ElectromAgnetic Detection (LEAD), Insitute of Space Sciences, Shandong University, Weihai, Shandong, China
Abstract
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Young Scholars Program of Shandong University, Weihai
Publisher
PeerJ
Subject
General Computer Science
Link
https://peerj.com/articles/cs-855.pdf
Reference29 articles.
1. Learning deep architectures for AI;Bengio;Foundations and Trends in Machine Learning,2009
2. Imaging and representation learning of solar radio spectrums for classification;Chen;Multimedia Tools & Applications,2016
3. Empirical evaluation of gated recurrent neural networks on sequence modeling;Chung,2014
4. Automated detection of solar radio bursts using a statistical method;Dayal;Solar Physics,2019
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The analysis of type II and type III solar radio bursts: GUI for the e-CALLISTO data;New Astronomy;2024-07
2. Solar radio spectrogram segmentation algorithm based on improved fuzzy C-means clustering and adaptive cross filtering;Physica Scripta;2024-03-04
3. Automatic Solar Radio Burst Detection Using Deep Learning;2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON);2023-12-05
4. Solar Radio Burst Detection Based on the MobileViT-SSDLite Lightweight Model;The Astrophysical Journal Supplement Series;2023-11-30
5. Automatic Burst Detection in Solar Radio Spectrograms Using Deep Learning: deARCE Method;Solar Physics;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3