An efficient transfer learning based cross model classification (TLBCM) technique for the prediction of breast cancer

Author:

Jakkaladiki Sudha Prathyusha,Maly Filip

Abstract

Breast cancer has been the most life-threatening disease in women in the last few decades. The high mortality rate among women is due to breast cancer because of less awareness and a minimum number of medical facilities to detect the disease in the early stages. In the recent era, the situation has changed with the help of many technological advancements and medical equipment to observe breast cancer development. The machine learning technique supports vector machines (SVM), logistic regression, and random forests have been used to analyze the images of cancer cells on different data sets. Although the particular technique has performed better on the smaller data set, accuracy still needs to catch up in most of the data, which needs to be fairer to apply in the real-time medical environment. In the proposed research, state-of-the-art deep learning techniques, such as transfer learning, based cross model classification (TLBCM), convolution neural network (CNN) and transfer learning, residual network (ResNet), and Densenet proposed for efficient prediction of breast cancer with the minimized error rating. The convolution neural network and transfer learning are the most prominent techniques for predicting the main features in the data set. The sensitive data is protected using a cyber-physical system (CPS) while using the images virtually over the network. CPS act as a virtual connection between human and networks. While the data is transferred in the network, it must monitor using CPS. The ResNet changes the data on many layers without compromising the minimum error rate. The DenseNet conciliates the problem of vanishing gradient issues. The experiment is carried out on the data sets Breast Cancer Wisconsin (Diagnostic) and Breast Cancer Histopathological Dataset (BreakHis). The convolution neural network and the transfer learning have achieved a validation accuracy of 98.3%. The results of these proposed methods show the highest classification rate between the benign and the malignant data. The proposed method improves the efficiency and speed of classification, which is more convenient for discovering breast cancer in earlier stages than the previously proposed methodologies.

Funder

University of Hradec Kralove, Czech Republic

Publisher

PeerJ

Subject

General Computer Science

Reference47 articles.

1. Double-shot transfer learning for breast cancer classification from x-ray images;Alkhaleefah;Applied Sciences,2020

2. A CADx scheme for mammography empowered with topological information from clustered microcalcifications’ atlases;Andreadis;IEEE Journal of Biomedical and Health Informatics,2014

3. 2D/3D multimode medical image alignment based on spatial histograms;Ban;Applied Sciences,2022

4. Representation learning: a review and new perspectives;Bengio;IEEE Transactions on Pattern Analysis and Machine Intelligence,2013

5. The algorithm of stereo vision and shape from shading based on endoscope imaging;Cao;Biomedical Signal Processing and Control,2022

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3