Adaptive resilient containment control using reinforcement learning for nonlinear stochastic multi-agent systems under sensor faults

Author:

Mo Guanzong1,Lyu Yixin2

Affiliation:

1. Guangdong University of Technology, Canton, China

2. Xiamen University, Xiamen, China

Abstract

This article proposes an optimized backstepping control strategy designed for a category of nonlinear stochastic strict-feedback multi-agent systems (MASs) with sensor faults. The plan formulates optimized solutions for the respective subsystems by designing both virtual and actual controls, achieving overall optimization of the backstepping control. To address sensor faults, an adaptive neural network (NN) compensation control method is considered. The reinforcement learning (RL) framework based on neural network approximation is employed, deriving RL update rules from the negative gradient of a simple positive function correlated with the Hamilton-Jacobi-Bellman (HJB) equation. This significantly simplifies the RL algorithm while relaxing the constraints for known dynamics and persistent excitation. The theoretical analysis, based on stochastic Lyapunov theory, demonstrates the semi-global uniform ultimate boundedness (SGUUB) of all signals within the enclosed system, and illustrates the convergence of all follower outputs to the dynamic convex hull defined by the leaders. Ultimately, the proposed control strategy’s effectiveness is validated through numerical simulations.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3