FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features

Author:

Ragab Dina A.ORCID,Attallah Omneya

Abstract

The precise and rapid diagnosis of coronavirus (COVID-19) at the very primary stage helps doctors to manage patients in high workload conditions. In addition, it prevents the spread of this pandemic virus. Computer-aided diagnosis (CAD) based on artificial intelligence (AI) techniques can be used to distinguish between COVID-19 and non-COVID-19 from the computed tomography (CT) imaging. Furthermore, the CAD systems are capable of delivering an accurate faster COVID-19 diagnosis, which consequently saves time for the disease control and provides an efficient diagnosis compared to laboratory tests. In this study, a novel CAD system called FUSI-CAD based on AI techniques is proposed. Almost all the methods in the literature are based on individual convolutional neural networks (CNN). Consequently, the FUSI-CAD system is based on the fusion of multiple different CNN architectures with three handcrafted features including statistical features and textural analysis features such as discrete wavelet transform (DWT), and the grey level co-occurrence matrix (GLCM) which were not previously utilized in coronavirus diagnosis. The SARS-CoV-2 CT-scan dataset is used to test the performance of the proposed FUSI-CAD. The results show that the proposed system could accurately differentiate between COVID-19 and non-COVID-19 images, as the accuracy achieved is 99%. Additionally, the system proved to be reliable as well. This is because the sensitivity, specificity, and precision attained to 99%. In addition, the diagnostics odds ratio (DOR) is ≥ 100. Furthermore, the results are compared with recent related studies based on the same dataset. The comparison verifies the competence of the proposed FUSI-CAD over the other related CAD systems. Thus, the novel FUSI-CAD system can be employed in real diagnostic scenarios for achieving accurate testing for COVID-19 and avoiding human misdiagnosis that might exist due to human fatigue. It can also reduce the time and exertion made by the radiologists during the examination process.

Publisher

PeerJ

Subject

General Computer Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3