A strong construction of S-box using Mandelbrot set an image encryption scheme

Author:

Aslam Mazzamal1,Beg Saira1,Anjum Adeel2,Qadir Zakria3,Khan Shawal1,Malik Saif Ur Rehman4,Mahmud MA Parvez5

Affiliation:

1. Computer Science, COMSATS Institute of Information Technology, Islamabad, Pakistan

2. Department of Information Technology, Quaid e Azam University, Islamabad, Pakistan

3. School of Computing Engineering, University of Western Sydney, Penrith, Australia

4. Information Security Institute, Cybernetica AS, Tallinn, Estonia

5. School of Engineering, Deakin University, School of Engineering, Australia

Abstract

The substitution box (S-box) plays a vital role in creating confusion during the encryption process of digital data. The quality of encryption schemes depends upon the S-box. There have been several attempts to enhance the quality of the S-box by using fractal chaotic mechanisms. However, there is still weakness in the robustness against cryptanalysis of fractal-based S-boxes. Due to their chaotic behavior, fractals are frequently employed to achieve randomness by confusion and diffusion process. A complex number-based S-box and a chaotic map diffusion are proposed to achieve high nonlinearity and low correlation. This study proposed a Mandelbrot set S-box construction based on the complex number and Chen chaotic map for resisting cryptanalytic attacks by creating diffusion in our proposed algorithm. The cryptosystem was built on the idea of substitution permutation networks (SPN). The complex nature of the proposed S-box makes it more random than other chaotic maps. The robustness of the proposed system was analyzed by different analysis properties of the S-box, such as nonlinearity, strict avalanche criterion, Bit independent criterion, and differential and linear probability. Moreover, to check the strength of the proposed S-box against differential and brute force attacks, we performed image encryption with the proposed S-box. The security analysis was performed, including statistical attack analysis and NIST analysis. The analysis results show that the proposed system achieves high-security standards than existing schemes.

Funder

Scientific Research at King Khalid University, Abha, Saudi Arabia

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3