A fully automated approach involving neuroimaging and deep learning for Parkinson’s disease detection and severity prediction

Author:

Erdaş Çağatay Berke1,Sümer Emre1

Affiliation:

1. Department of Computer Engineering/Faculty of Engineering, Başkent University, Ankara, Türkiye

Abstract

Three-dimensional magnetic resonance imaging has been proved to detect and predict the severity of progressive neurodegenerative disorders such as Parkinson’s disease. The application of pre-processing with neuroimaging methods plays a vital role in post-processing for these problems. The development of technology over the years has enabled the use of deep learning methods such as convolutional neural networks (CNN) on magnetic resonance imaging (MRI) . In this study, the detection of Parkinson’s disease and the prediction of disease severity were studied with 2D and 3D CNN using T1-weighted MRIs that were pre-processed with FLIRT image registration and BET non-brain tissue scraper. For 2D CNN, the median slices of the MR images in the sagittal, coronal, and axial planes were used separately and in combination. In addition, the whole brain for 3D CNN has been downsized. Considering the performance of the proposed methods, the highest results achieved for detecting Parkinson’s disease were measured as 0.9620, 0.9452, 0.9407, and 0.9536 for Accuracy, F1 score, precision, and Recall, respectively. The highest result achieved for estimating the severity of Parkinson’s disease was that 3D CNN was fed three times with a downsized whole MRI, which were measured for R, and R2 as 0.9150 and 0.8372, respectively. When the results obtained with the methods suggested within the scope of the study were examined, it was observed that the applied methods yielded promising performance.

Publisher

PeerJ

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3