Evaluation of Rust code verbosity, understandability and complexity

Author:

Ardito Luca1ORCID,Barbato Luca2,Coppola Riccardo1ORCID,Valsesia Michele1

Affiliation:

1. Department of Control and Computer Engineering, Polytechnic Institute of Turin, Torino, Piemonte, Italia

2. Luminem, Torino, Piemonte, Italia

Abstract

Rust is an innovative programming language initially implemented by Mozilla, developed to ensure high performance, reliability, and productivity. The final purpose of this study consists of applying a set of common static software metrics to programs written in Rust to assess the verbosity, understandability, organization, complexity, and maintainability of the language. To that extent, nine different implementations of algorithms available in different languages were selected. We computed a set of metrics for Rust, comparing them with the ones obtained from C and a set of object-oriented languages: C++, Python, JavaScript, TypeScript. To parse the software artifacts and compute the metrics, it was leveraged a tool called rust-code-analysis that was extended with a software module, written in Python, with the aim of uniforming and comparing the results. The Rust code had an average verbosity in terms of the raw size of the code. It exposed the most structured source organization in terms of the number of methods. Rust code had a better Cyclomatic Complexity, Halstead Metrics, and Maintainability Indexes than C and C++ but performed worse than the other considered object-oriented languages. Lastly, the Rust code exhibited the lowest COGNITIVE complexity of all languages. The collected measures prove that the Rust language has average complexity and maintainability compared to a set of popular languages. It is more easily maintainable and less complex than the C and C++ languages, which can be considered syntactically similar. These results, paired with the memory safety and safe concurrency characteristics of the language, can encourage wider adoption of the language of Rust in substitution of the C language in both the open-source and industrial environments.

Funder

Mozilla Research Fund

Publisher

PeerJ

Subject

General Computer Science

Reference50 articles.

1. An integrated measure of software maintainability;Aggarwal,2002

2. Slice-based cognitive complexity metrics for defect prediction;Alqadi,2020

3. Towards a new framework of software reliability measurement based on software metrics;Amara;Procedia Computer Science,2017

4. rust-code-analysis: a rust library to analyze and extract maintainability information from source codes;Ardito;SoftwareX,2020a

5. A tool-based perspective on software code maintainability metrics: a systematic literature review;Ardito;Scientific Programming,2020b

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3