ELI: an IoT-aware big data pipeline with data curation and data quality

Author:

de Haro-Olmo Francisco José1,Valencia-Parra Alvaro2,Varela-Vaca Ángel Jesús2,Álvarez-Bermejo José Antonio1,Gómez-López María Teresa2

Affiliation:

1. Departamento de Informática, Universidad de Almería, Almería, Spain

2. Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla, Spain

Abstract

The complexity of analysing data from IoT sensors requires the use of Big Data technologies, posing challenges such as data curation and data quality assessment. Not facing both aspects potentially can lead to erroneous decision-making (i.e., processing incorrectly treated data, introducing errors into processes, causing damage or increasing costs). This article presents ELI, an IoT-based Big Data pipeline for developing a data curation process and assessing the usability of data collected by IoT sensors in both offline and online scenarios. We propose the use of a pipeline that integrates data transformation and integration tools and a customisable decision model based on the Decision Model and Notation (DMN) to evaluate the data quality. Our study emphasises the importance of data curation and quality to integrate IoT information by identifying and discarding low-quality data that obstruct meaningful insights and introduce errors in decision making. We evaluated our approach in a smart farm scenario using agricultural humidity and temperature data collected from various types of sensors. Moreover, the proposed model exhibited consistent results in offline and online (stream data) scenarios. In addition, a performance evaluation has been developed, demonstrating its effectiveness. In summary, this article contributes to the development of a usable and effective IoT-based Big Data pipeline with data curation capabilities and assessing data usability in both online and offline scenarios. Additionally, it introduces customisable decision models for measuring data quality across multiple dimensions.

Funder

AETHER-US

ALBA-US

COPERNICA

METAMORFOSIS

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3