A small target detection algorithm based on improved YOLOv5 in aerial image

Author:

Zhang PengLei,Liu Yanhong

Abstract

Uncrewed aerial vehicle (UAV) aerial photography technology is widely used in both industrial and military sectors, but remote sensing for small target detection still faces several challenges. Firstly, the small size of targets increases the difficulty of detection and recognition. Secondly, complex aerial environmental conditions, such as lighting changes and background noise, significantly affect the quality of detection. Rapid and accurate identification of target categories is also a key issue, requiring improvements in detection speed and accuracy. This study proposes an improved remote sensing target detection algorithm based on the YOLOv5 architecture. In the YOLOv5s model, the Distribution Focal Loss function is introduced to accelerate the convergence speed of the network and enhance the network’s focus on annotated data. Simultaneously, adjustments are made to the Cross Stage Partial (CSP) network structure, modifying the convolution kernel size, adding a new stack-separated convolution module, and designing a new attention mechanism to achieve effective feature fusion between different hierarchical structure feature maps. Experimental results demonstrate a significant performance improvement of the proposed algorithm on the RSOD dataset, with a 3.5% increase in detection accuracy compared to the original algorithm. These findings indicate that our algorithm effectively enhances the precision of remote sensing target detection and holds potential application prospects.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Reference23 articles.

1. Neural machine translation by jointly learning to align and translate;Bahdanau,2014

2. DSSD: deconvolutional single shot detector;Fu,2017

3. Rich feature hierarchies for accurate object detection and semantic segmentation;Girshick,2014

4. MAN and CAT: mix attention to NN and concatenate attention to YOLO;Guan;The Journal of Supercomputing,2023

5. Coordinate attention for efficient mobile network design;Hou,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3