Bilinear pooling in video-QA: empirical challenges and motivational drift from neurological parallels

Author:

Winterbottom Thomas1,Xiao Sarah2,McLean Alistair3,Al Moubayed Noura1

Affiliation:

1. Department of Computer Science, Durham University, Durham, United Kingdom

2. Durham University Business School, Durham University, Durham, Durham, United Kingdom

3. Carbon AI, Middlesbrough, United Kingdom

Abstract

Bilinear pooling (BLP) refers to a family of operations recently developed for fusing features from different modalities predominantly for visual question answering (VQA) models. Successive BLP techniques have yielded higher performance with lower computational expense, yet at the same time they have drifted further from the original motivational justification of bilinear models, instead becoming empirically motivated by task performance. Furthermore, despite significant success in text-image fusion in VQA, BLP has not yet gained such notoriety in video question answering (video-QA). Though BLP methods have continued to perform well on video tasks when fusing vision and non-textual features, BLP has recently been overshadowed by other vision and textual feature fusion techniques in video-QA. We aim to add a new perspective to the empirical and motivational drift in BLP. We take a step back and discuss the motivational origins of BLP, highlighting the often-overlooked parallels to neurological theories (Dual Coding Theory and The Two-Stream Model of Vision). We seek to carefully and experimentally ascertain the empirical strengths and limitations of BLP as a multimodal text-vision fusion technique in video-QA using two models (TVQA baseline and heterogeneous-memory-enchanced ‘HME’ model) and four datasets (TVQA, TGif-QA, MSVD-QA, and EgoVQA). We examine the impact of both simply replacing feature concatenation in the existing models with BLP, and a modified version of the TVQA baseline to accommodate BLP that we name the ‘dual-stream’ model. We find that our relatively simple integration of BLP does not increase, and mostly harms, performance on these video-QA benchmarks. Using our insights on recent work in BLP for video-QA results and recently proposed theoretical multimodal fusion taxonomies, we offer insight into why BLP-driven performance gain for video-QA benchmarks may be more difficult to achieve than in earlier VQA models. We share our perspective on, and suggest solutions for, the key issues we identify with BLP techniques for multimodal fusion in video-QA. We look beyond the empirical justification of BLP techniques and propose both alternatives and improvements to multimodal fusion by drawing neurological inspiration from Dual Coding Theory and the Two-Stream Model of Vision. We qualitatively highlight the potential for neurological inspirations in video-QA by identifying the relative abundance of psycholinguistically ‘concrete’ words in the vocabularies for each of the text components (e.g.,questions and answers) of the four video-QA datasets we experiment with.

Funder

The European Regional Development Fund

Carbon AI

Publisher

PeerJ

Subject

General Computer Science

Reference105 articles.

1. A kernel method for canonical correlation analysis;Akaho,2001

2. Bottom-up and top-down attention for image captioning and visual question answering;Anderson;2018 IEEE/CVF conference on computer vision and pattern recognition,2018

3. Deep canonical correlation analysis;Andrew;Proceedings of the 30th International Conference on Machine Learning, PMLR,2013

4. Multimodal machine learning: a survey and taxonomy;Baltrušaitis;IEEE Transactions on Pattern Analysis and Machine Intelligence,2019

5. Recall of meaningful phrases;Begg;Journal of Verbal Learning and Verbal Behavior,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3