An empirical evaluation of link quality utilization in ETX routing for VANETs

Author:

Al-Qassas Raad1ORCID,Qasaimeh Malik2

Affiliation:

1. Princess Sumaya University for Technology, Amman, Jordan

2. Jordan University of Science and Technology, Irbid, Jordan

Abstract

Routing in vehicular ad hoc networks (VANETs) enables vehicles to communicate for safety and non-safety applications. However, there are limitations in wireless communication that can degrade VANET performance, so it is crucial to optimize the operation of routing protocols to address this. Various routing protocols employed the expected transmission count (ETX) in their operation as one way to achieve the required efficiency and robustness. ETX is used to estimate link quality for improved route selection. While some studies have evaluated the utilization of ETX in specific protocols, they lack a comprehensive analysis across protocols under varied network conditions. This research provides a comprehensive comparative evaluation of ETX-based routing protocols for VANETs using the nomadic community mobility model. It covers a foundational routing protocol, ad hoc on-demand distance vector (AODV), as well as newer variants that utilize ETX, lightweight ETX (LETX), and power-based light reverse ETX (PLR-ETX), which are referred to herein as AODV-ETX, AODV-LETX, and AODV-PLR, respectively. The protocols are thoroughly analyzed via ns-3 simulations under different traffic and mobility scenarios. Our evaluation model considers five performance parameters including throughput, routing overhead, end-to-end delay, packet loss, and underutilization ratio. The analysis provides insight into designing robust and adaptive ETX routing for VANET to better serve emerging intelligent transportation system applications through a better understanding of protocol performance under different network conditions. The key findings show that ETX-optimized routing can provide significant performance enhancements in terms of end-to-end delay, throughput, routing overhead, packet loss and underutilization ratio. The extensive simulations demonstrated that AODV-PLR outperforms its counterparts AODV-ETX and AODV-LETX and the foundational AODV routing protocol across the performance metrics.

Publisher

PeerJ

Reference42 articles.

1. Data fusion and the impact of group mobility on load distribution on MRHOF and OF0;Al-Qassas;Cybernetics and Information Technologies,2022

2. A comprehensive survey on vehicular Ad Hoc network;Al-Sultan;Journal of Network and Computer Applications,2014

3. Link utility aware geographic routing for urban VANETs using two-hop neighbor information;Alzamzami;Ad Hoc Networks,2020

4. Performance comparison of AODV, AODV-ETX and modified AODV-ETX in VANET using NS3;Ardianto,2022

5. BonnMotion: a mobility scenario generation and analysis tool;Aschenbruck,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3