Affiliation:
1. Princess Sumaya University for Technology, Amman, Jordan
2. Jordan University of Science and Technology, Irbid, Jordan
Abstract
Routing in vehicular ad hoc networks (VANETs) enables vehicles to communicate for safety and non-safety applications. However, there are limitations in wireless communication that can degrade VANET performance, so it is crucial to optimize the operation of routing protocols to address this. Various routing protocols employed the expected transmission count (ETX) in their operation as one way to achieve the required efficiency and robustness. ETX is used to estimate link quality for improved route selection. While some studies have evaluated the utilization of ETX in specific protocols, they lack a comprehensive analysis across protocols under varied network conditions. This research provides a comprehensive comparative evaluation of ETX-based routing protocols for VANETs using the nomadic community mobility model. It covers a foundational routing protocol, ad hoc on-demand distance vector (AODV), as well as newer variants that utilize ETX, lightweight ETX (LETX), and power-based light reverse ETX (PLR-ETX), which are referred to herein as AODV-ETX, AODV-LETX, and AODV-PLR, respectively. The protocols are thoroughly analyzed via ns-3 simulations under different traffic and mobility scenarios. Our evaluation model considers five performance parameters including throughput, routing overhead, end-to-end delay, packet loss, and underutilization ratio. The analysis provides insight into designing robust and adaptive ETX routing for VANET to better serve emerging intelligent transportation system applications through a better understanding of protocol performance under different network conditions. The key findings show that ETX-optimized routing can provide significant performance enhancements in terms of end-to-end delay, throughput, routing overhead, packet loss and underutilization ratio. The extensive simulations demonstrated that AODV-PLR outperforms its counterparts AODV-ETX and AODV-LETX and the foundational AODV routing protocol across the performance metrics.
Reference42 articles.
1. Data fusion and the impact of group mobility on load distribution on MRHOF and OF0;Al-Qassas;Cybernetics and Information Technologies,2022
2. A comprehensive survey on vehicular Ad Hoc network;Al-Sultan;Journal of Network and Computer Applications,2014
3. Link utility aware geographic routing for urban VANETs using two-hop neighbor information;Alzamzami;Ad Hoc Networks,2020
4. Performance comparison of AODV, AODV-ETX and modified AODV-ETX in VANET using NS3;Ardianto,2022
5. BonnMotion: a mobility scenario generation and analysis tool;Aschenbruck,2010