Paragraph-level attention based deep model for chapter segmentation

Author:

Virameteekul Paveen

Abstract

Books are usually divided into chapters and sections. Correctly and automatically recognizing chapter boundaries can work as a proxy when segmenting long texts (a more general task). Book chapters can be easily segmented by humans, but automatic segregation is more challenging because the data is semi-structured. Since the concept of language is prone to ambiguity, it is essential to identify the relationship between the words in each paragraph and classify each consecutive paragraph based on their respective relationships with one another. Although researchers have designed deep learning-based models to solve this problem, these approaches have not considered the paragraph-level semantics among the consecutive paragraphs. In this article, we propose a novel deep learning-based method to segment book chapters that uses paragraph-level semantics and an attention mechanism. We first utilized a pre-trained XLNet model connected to a convolutional neural network (CNN) to extract the semantic meaning of each paragraph. Then, we measured the similarities in the semantics of each paragraph and designed an attention mechanism to inject the similarity information in order to better predict the chapter boundaries. The experimental results indicated that the performance of our proposed method can surpass those of other state-of-the-art (SOTA) methods for chapter segmentation on public datasets (the proposed model achieved an F1 score of 0.8856, outperforming the Bidirectional Encoder Representations from Transformers (BERT) model’s F1 score of 0.6640). The ablation study also illustrated that the paragraph-level attention mechanism could produce a significant increase in performance.

Publisher

PeerJ

Subject

General Computer Science

Reference41 articles.

1. Understanding of a convolutional neural network;Albawi,2017

2. A comparative analysis of machine/deep learning models for parking space availability prediction;Awan;Sensors,2020

3. Natural language processing (NLP) based text summarization - a survey;Awasthi,2021

4. Attention-based neural text segmentation;Badjatiya;ArXiv preprint,2018

5. Neural machine translation by jointly learning to align and translate;Bahdanau;ArXiv preprint,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Wiki90k: Multilingual Benchmark Dataset for Paragraph Segmentation;Advances in Computational Collective Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3