Effects of data count and image scaling on Deep Learning training

Author:

Hirahara Daisuke1,Takaya Eichi2,Takahara Taro3,Ueda Takuya4

Affiliation:

1. Department of AI Research Lab, Harada Academy, Kagoshima, Kagoshima, Japan

2. School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa, Japan

3. Department of Biological Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan

4. Department of Clinical Imaging, Graduate School of Medicine, Tohoku University, Sendai, Japan

Abstract

Background Deep learning using convolutional neural networks (CNN) has achieved significant results in various fields that use images. Deep learning can automatically extract features from data, and CNN extracts image features by convolution processing. We assumed that increasing the image size using interpolation methods would result in an effective feature extraction. To investigate how interpolation methods change as the number of data increases, we examined and compared the effectiveness of data augmentation by inversion or rotation with image augmentation by interpolation when the image data for training were small. Further, we clarified whether image augmentation by interpolation was useful for CNN training. To examine the usefulness of interpolation methods in medical images, we used a Gender01 data set, which is a sex classification data set, on chest radiographs. For comparison of image enlargement using an interpolation method with data augmentation by inversion and rotation, we examined the results of two- and four-fold enlargement using a Bilinear method. Results The average classification accuracy improved by expanding the image size using the interpolation method. The biggest improvement was noted when the number of training data was 100, and the average classification accuracy of the training model with the original data was 0.563. However, upon increasing the image size by four times using the interpolation method, the average classification accuracy significantly improved to 0.715. Compared with the data augmentation by inversion and rotation, the model trained using the Bilinear method showed an improvement in the average classification accuracy by 0.095 with 100 training data and 0.015 with 50,000 training data. Comparisons of the average classification accuracy of the chest X-ray images showed a stable and high-average classification accuracy using the interpolation method. Conclusion Training the CNN by increasing the image size using the interpolation method is a useful method. In the future, we aim to conduct additional verifications using various medical images to further clarify the reason why image size is important.

Publisher

PeerJ

Subject

General Computer Science

Reference16 articles.

1. Multi-scale CNN based on region proposals for efficient breast abnormality recognition;Bakkouri;Multimedia Tools and Applications,2019

2. Lanczos filtering in one and two dimensions;Duchon;Journal of Applied Meteorology,1979

3. On the use of windows for harmonic analysis with the discrete Fourier transform;Harris;Proceedings of the IEEE,1978

4. AugMix: a simple data processing method to improve robustness and uncertainty;Hendrycks,2020

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3