A secure cross-domain interaction scheme for blockchain-based intelligent transportation systems

Author:

Si Haiping1,Li Weixia1,Wang Qingyi1,Cao Haohao2,Bacao Fernando3,Sun Changxia1

Affiliation:

1. College of Information and Management Science, Henan Agricultural University, Zhengzhou, China

2. College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China

3. NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Lisboa, Portugal

Abstract

In the intelligent transportation system (ITS), secure and efficient data communication among vehicles, road testing equipment, computing nodes, and transportation agencies is important for building a smart city-integrated transportation system. However, the traditional centralized processing approach may face threats in terms of data leakage and trust. The use of distributed, tamper-proof blockchain technology can improve the decentralized storage and security of data in the ITS network. However, the cross-trust domain devices, terminals, and transportation agencies in the heterogeneous blockchain network of the ITS still face great challenges in trusted data communication and interoperability. In this article, we propose a heterogeneous cross-chain interaction mechanism based on relay nodes and identity encryption to solve the problem of data cross-domain interaction between devices and agencies in the ITS. First, we propose the ITS cross-chain communication framework and improve the cross-chain interaction model. The relay nodes are interconnected through libP2P to form a relay node chain, which is used for cross-chain information verification and transmission. Secondly, we propose a relay node secure access scheme based on identity-based encryption to provide reliable identity authentication for relay nodes. Finally, we build a standard cross-chain communication protocol and cross-chain transaction lifecycle for this mechanism. We use Hyperledger Fabric and FISCO BCOS blockchain to design and implement this solution, and verify the feasibility of this cross-chain interaction mechanism. The experimental results show that the mechanism can achieve a stable data cross-chain read throughput of 2,000 transactions per second, which can meet the requirements of secure and efficient cross-chain communication and interaction among heterogeneous blockchains in the ITS, and has high application value.

Funder

Henan Province Key Science-technology Research Project

Key Research Project of Henan Provincial Higher Education Institution

Henan Province Major Public Welfare Projects

Publisher

PeerJ

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3