Impact study of data locality on task-based applications through the Heteroprio scheduler

Author:

Bramas BérengerORCID

Abstract

The task-based approach has emerged as a viable way to effectively use modern heterogeneous computing nodes. It allows the development of parallel applications with an abstraction of the hardware by delegating task distribution and load balancing to a dynamic scheduler. In this organization, the scheduler is the most critical component that solves the DAG scheduling problem in order to select the right processing unit for the computation of each task. In this work, we extend our Heteroprio scheduler that was originally created to execute the fast multipole method on multi-GPUs nodes. We improve Heteroprio by taking into account data locality during task distribution. The main principle is to use different task-lists for the different memory nodes and to investigate how locality affinity between the tasks and the different memory nodes can be evaluated without looking at the tasks’ dependencies. We evaluate the benefit of our method on two linear algebra applications and a stencil code. We show that simple heuristics can provide significant performance improvement and cut by more than half the total memory transfer of an execution.

Publisher

PeerJ

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Tasks Scheduling with Multiple Priorities on Heterogeneous Computing Systems;2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2024-05-27

2. BLQ: Light-Weight Locality-Aware Runtime for Blocking-Less Queuing;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

3. Automated prioritizing heuristics for parallel task graph scheduling in heterogeneous computing;PeerJ Computer Science;2022-09-16

4. Locality-Aware Scheduling for Scalable Heterogeneous Environments;2020 IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS);2020-11

5. Improving parallel executions by increasing task granularity in task-based runtime systems using acyclic DAG clustering;PeerJ Computer Science;2020-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3