Intelligent toy tracking trajectory design based on mobile cloud terminal deployment and depth-first search algorithm

Author:

Zhang Yang,Zhang Hu

Abstract

The popularization of intelligent toys enriches the lives of the general public. To provide the public with a better toy experience, we propose the intelligent toy tracking method by the mobile cloud terminal deployment and depth-first search algorithm. Firstly, we construct a toy detection model via Transformer, which realizes the positioning of toys in the image through the refined region adaptive boundary representation. Then, using these detected continuous frames, we improve the toy tracking based on a depth-first search. Long-short-term memory (LSTM) constructs the continuous frame tracking structure, and the depth-first search mechanism is embedded to realize the accurate tracking of multiple targets in continuous frames. Finally, to realize the terminal marginalization of the proposed method, this chapter proposes a lightweight model deployment method based on mobile cloud terminals to realize the maintenance of the optimal machine state of intelligent toys. The experiment proves that our proposed target method can reach the world-leading level and obtain the mAP value of 0.858. Our tracking method can also perform excellently with a MOTA value of 0.916.

Publisher

PeerJ

Reference41 articles.

1. Maya: an artificial intelligence based smart toy for pre-school children;Akdeniz;International Journal of Child-Computer Interaction,2021

2. Simple online and realtime tracking;Bewley,2016

3. Observation-centric sort: rethinking sort for robust multi-object tracking;Cao,2023

4. Problem formulations and solvers in linear SVM: a review;Chauhan;Artificial Intelligence Review,2019

5. Man-machine interface of developing intelligent toys based on tree structure;Chen,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3