A structured multi-head attention prediction method based on heterogeneous financial data

Author:

Zhao Cheng1,Li Fangyong2,Peng Zhe3,Zhou Xiao4,Zhuge Yan5

Affiliation:

1. Zhejiang University of Technology, School of Economics, Hangzhou, Zhejiang, China

2. Zhejiang University of Technology, College of Computer Science and Technology College of Software, Hangzhou, Zhejiang, China

3. Zhejiang University of Technology, College of Management, Hangzhou, Zhejiang, China

4. Zhejiang SUPCON Technology Co., Ltd, Hangzhou, Zhejiang, China

5. Zhejiang Technical Institute of Economics, School of Digital Information Technology, Hangzhou, Zhejiang, China

Abstract

The diverse characteristics of heterogeneous data pose challenges in analyzing combined price and volume data. Therefore, appropriately handling heterogeneous financial data is crucial for accurate stock prediction. This article proposes a model that applies customized data processing methods tailored to the characteristics of different types of heterogeneous financial data, enabling finer granularity and improved feature extraction. By utilizing the structured multi-head attention mechanism, the model captures the impact of heterogeneous financial data on stock price trends by extracting data information from technical, financial, and sentiment indicators separately. Experimental results conducted on four representative individual stocks in China’s A-share market demonstrate the effectiveness of the proposed method. The model achieves an average MAPE of 1.378%, which is 0.429% lower than the benchmark algorithm. Moreover, the backtesting return rate exhibits an average increase of 28.56%. These results validate that the customized preprocessing method and structured multi-head attention mechanism can enhance prediction accuracy by attending to different types of heterogeneous data individually.

Funder

Zhejiang higher education institutions

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3