Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching network

Author:

Zheng Wenfeng1ORCID,Yin Lirong2

Affiliation:

1. School of Automation, University of Electronic Science and Technology of China, Chengdu, China

2. Department of Geography and Anthropology, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, United States

Abstract

The whole sentence representation reasoning process simultaneously comprises a sentence representation module and a semantic reasoning module. This paper combines the multi-layer semantic representation network with the deep fusion matching network to solve the limitations of only considering a sentence representation module or a reasoning model. It proposes a joint optimization method based on multi-layer semantics called the Semantic Fusion Deep Matching Network (SCF-DMN) to explore the influence of sentence representation and reasoning models on reasoning performance. Experiments on text entailment recognition tasks show that the joint optimization representation reasoning method performs better than the existing methods. The sentence representation optimization module and the improved optimization reasoning model can promote reasoning performance when used individually. However, the optimization of the reasoning model has a more significant impact on the final reasoning results. Furthermore, after comparing each module’s performance, there is a mutual constraint between the sentence representation module and the reasoning model. This condition restricts overall performance, resulting in no linear superposition of reasoning performance. Overall, by comparing the proposed methods with other existed methods that are tested using the same database, the proposed method solves the lack of in-depth interactive information and interpretability in the model design which would be inspirational for future improving and studying of natural language reasoning.

Funder

Sichuan Science and Technology Program

Publisher

PeerJ

Subject

General Computer Science

Reference33 articles.

1. A large annotated corpus for learning natural language inference;Bowman,2015

2. A fast unified model for parsing and sentence understanding;Bowman,2016

3. Multi-scale relation network for few-shot learning based on meta-learning;Ding,2019

4. Attention-fused deep matching network for natural language inference;Duan,2018

5. Understanding the difficulty of training deep feedforward neural networks;Glorot,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3