Affiliation:
1. Semantic Software Lab, Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
2. Heinz-Nixdorf-Chair for Distributed Information Systems, Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
Abstract
Motivation
Scientists increasingly rely on intelligent information systems to help them in their daily tasks, in particular for managing research objects, like publications or datasets. The relatively young research field of Semantic Publishing has been addressing the question how scientific applications can be improved through semantically rich representations of research objects, in order to facilitate their discovery and re-use. To complement the efforts in this area, we propose an automatic workflow to construct semantic user profiles of scholars, so that scholarly applications, like digital libraries or data repositories, can better understand their users’ interests, tasks, and competences, by incorporating these user profiles in their design. To make the user profiles sharable across applications, we propose to build them based on standard semantic web technologies, in particular the Resource Description Framework (RDF) for representing user profiles and Linked Open Data (LOD) sources for representing competence topics. To avoid the cold start problem, we suggest to automatically populate these profiles by analyzing the publications (co-)authored by users, which we hypothesize reflect their research competences.
Results
We developed a novel approach, ScholarLens, which can automatically generate semantic user profiles for authors of scholarly literature. For modeling the competences of scholarly users and groups, we surveyed a number of existing linked open data vocabularies. In accordance with the LOD best practices, we propose an RDF Schema (RDFS) based model for competence records that reuses existing vocabularies where appropriate. To automate the creation of semantic user profiles, we developed a complete, automated workflow that can generate semantic user profiles by analyzing full-text research articles through various natural language processing (NLP) techniques. In our method, we start by processing a set of research articles for a given user. Competences are derived by text mining the articles, including syntactic, semantic, and LOD entity linking steps. We then populate a knowledge base in RDF format with user profiles containing the extracted competences.We implemented our approach as an open source library and evaluated our system through two user studies, resulting in mean average precision (MAP) of up to 95%. As part of the evaluation, we also analyze the impact of semantic zoning of research articles on the accuracy of the resulting profiles. Finally, we demonstrate how these semantic user profiles can be applied in a number of use cases, including article ranking for personalized search and finding scientists competent in a topic —e.g., to find reviewers for a paper.
Availability
All software and datasets presented in this paper are available under open source licenses in the supplements and documented at http://www.semanticsoftware.info/semantic-user-profiling-peerj-2016-supplements. Additionally, development releases of ScholarLens are available on our GitHub page: https://github.com/SemanticSoftwareLab/ScholarLens.
Reference57 articles.
1. Analyzing user modeling on twitter for personalized news recommendations;Abel,2011
2. Determining expert profiles (with an application to expert finding);Balog,2007
3. Expertise retrieval;Balog;Foundation and Trends in Information Retrieval,2012
4. Publishing on the semantic web;Berners-Lee;Nature,2001
5. Latent dirichlet allocation;Blei;The Journal of Machine Learning Research,2003
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献