Predicting the results of evaluation procedures of academics

Author:

Poggi Francesco1,Ciancarini Paolo12,Gangemi Aldo3,Nuzzolese Andrea Giovanni4,Peroni Silvio3,Presutti Valentina4

Affiliation:

1. Department of Computer Science and Engineering (DISI), University of Bologna, Bologna, Italy

2. Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis, Russia

3. Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

4. STLab, Institute of Cognitive Science and Technologies, National Research Council, Roma, Italy

Abstract

Background The 2010 reform of the Italian university system introduced the National Scientific Habilitation (ASN) as a requirement for applying to permanent professor positions. Since the CVs of the 59,149 candidates and the results of their assessments have been made publicly available, the ASN constitutes an opportunity to perform analyses about a nation-wide evaluation process. Objective The main goals of this paper are: (i) predicting the ASN results using the information contained in the candidates’ CVs; (ii) identifying a small set of quantitative indicators that can be used to perform accurate predictions. Approach Semantic technologies are used to extract, systematize and enrich the information contained in the applicants’ CVs, and machine learning methods are used to predict the ASN results and to identify a subset of relevant predictors. Results For predicting the success in the role of associate professor, our best models using all and the top 15 predictors make accurate predictions (F-measure values higher than 0.6) in 88% and 88.6% of the cases, respectively. Similar results have been achieved for the role of full professor. Evaluation The proposed approach outperforms the other models developed to predict the results of researchers’ evaluation procedures. Conclusions Such results allow the development of an automated system for supporting both candidates and committees in the future ASN sessions and other scholars’ evaluation procedures.

Funder

Italian National Agency for the Assessment of Universities and Research

CINI

CNR-ISTC

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3