Detecting Parkinson’s disease from shoe-mounted accelerometer sensors using convolutional neural networks optimized with modified metaheuristics

Author:

Jovanovic Luka1,Damaševičius Robertas2ORCID,Matic Rade3,Kabiljo Milos3,Simic Vladimir45ORCID,Kunjadic Goran6,Antonijevic Milos7ORCID,Zivkovic Miodrag7,Bacanin Nebojsa78ORCID

Affiliation:

1. Faculty of Technical Sciences, Singidunum University, Belgrade, Serbia

2. Department of Applied Informatics, Vytautas Magnus University, Akademija, Lithuania

3. Department for Information Systems and Technologies, Belgrade Academy for Business and Arts Applied Studies, Belgrade, Serbia

4. Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia

5. College of Engineering, Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan City, Taiwan

6. Higher Colleges of Technology, Abu Dhabi, United Arab Emirates

7. Faculty of Informatics and Computing, Singidunum University, Belgrade, Serbia

8. MEU Research Unit, Middle East University, Amman, Jordan

Abstract

Neurodegenerative conditions significantly impact patient quality of life. Many conditions do not have a cure, but with appropriate and timely treatment the advance of the disease could be diminished. However, many patients only seek a diagnosis once the condition progresses to a point at which the quality of life is significantly impacted. Effective non-invasive and readily accessible methods for early diagnosis can considerably enhance the quality of life of patients affected by neurodegenerative conditions. This work explores the potential of convolutional neural networks (CNNs) for patient gain freezing associated with Parkinson’s disease. Sensor data collected from wearable gyroscopes located at the sole of the patient’s shoe record walking patterns. These patterns are further analyzed using convolutional networks to accurately detect abnormal walking patterns. The suggested method is assessed on a public real-world dataset collected from parents affected by Parkinson’s as well as individuals from a control group. To improve the accuracy of the classification, an altered variant of the recent crayfish optimization algorithm is introduced and compared to contemporary optimization metaheuristics. Our findings reveal that the modified algorithm (MSCHO) significantly outperforms other methods in accuracy, demonstrated by low error rates and high Cohen’s Kappa, precision, sensitivity, and F1-measures across three datasets. These results suggest the potential of CNNs, combined with advanced optimization techniques, for early, non-invasive diagnosis of neurodegenerative conditions, offering a path to improve patient quality of life.

Publisher

PeerJ

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3