Fine grain emotion analysis in Spanish using linguistic features and transformers

Author:

Salmerón-Ríos Alejandro1,García-Díaz José Antonio1,Pan Ronghao1,Valencia-García Rafael1

Affiliation:

1. Departamento de Informática y Sistemas, Universidad de Murcia, Campus de Espinardo, Murcia, Murcia, Spain

Abstract

Mental health issues are a global concern, with a particular focus on the rise of depression. Depression affects millions of people worldwide and is a leading cause of suicide, particularly among young people. Recent surveys indicate an increase in cases of depression during the COVID-19 pandemic, which affected approximately 5.4% of the population in Spain in 2020. Social media platforms such as X (formerly Twitter) have become important hubs for health information as more people turn to these platforms to share their struggles and seek emotional support. Researchers have discovered a link between emotions and mental illnesses such as depression. This correlation provides a valuable opportunity for automated analysis of social media data to detect changes in mental health status that might otherwise go unnoticed, thus preventing more serious health consequences. Therefore, this research explores the field of emotion analysis in Spanish towards mental disorders. There are two contributions in this area. On the one hand, the compilation, translation, evaluation and correction of a novel dataset composed of a mixture of other existing datasets in the bibliography. This dataset compares a total of 16 emotions, with an emphasis on negative emotions. On the other hand, the in-depth evaluation of this novel dataset with several state-of-the-art transformers based on encoder-only and encoder-decoder architectures. The analysis compromises monolingual, multilingual and distilled models as well as feature integration techniques. The best results are obtained with the encoder-only MarIA model, with a macro-average F1 score of 60.4771%.

Funder

LaTe4PoliticES

The European Fund for Regional Development (ERDF)-a way to make Europe and LTSWM

The European Union NextGenerationEU/PRTR

Publisher

PeerJ

Reference65 articles.

1. Transformer models for text-based emotion detection: a review of BERT-based approaches;Acheampong;Artificial Intelligence Review,2021

2. XLM-T: multilingual language models in Twitter for sentiment analysis and beyond;Barbieri,2022

3. Semantic-emotion neural network for emotion recognition from text;Batbaatar;IEEE Access,2019

4. Multilingual emotion classification using supervised learning: comparative experiments;Becker;Information Processing and Management,2017

5. Language models are few-shot learners;Brown;Advances in Neural Information Processing Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3