Improving bioinformatics software quality through incorporation of software engineering practices

Author:

Noor AdeebORCID

Abstract

BackgroundBioinformatics software is developed for collecting, analyzing, integrating, and interpreting life science datasets that are often enormous. Bioinformatics engineers often lack the software engineering skills necessary for developing robust, maintainable, reusable software. This study presents review and discussion of the findings and efforts made to improve the quality of bioinformatics software.MethodologyA systematic review was conducted of related literature that identifies core software engineering concepts for improving bioinformatics software development: requirements gathering, documentation, testing, and integration. The findings are presented with the aim of illuminating trends within the research that could lead to viable solutions to the struggles faced by bioinformatics engineers when developing scientific software.ResultsThe findings suggest that bioinformatics engineers could significantly benefit from the incorporation of software engineering principles into their development efforts. This leads to suggestion of both cultural changes within bioinformatics research communities as well as adoption of software engineering disciplines into the formal education of bioinformatics engineers. Open management of scientific bioinformatics development projects can result in improved software quality through collaboration amongst both bioinformatics engineers and software engineers.ConclusionsWhile strides have been made both in identification and solution of issues of particular import to bioinformatics software development, there is still room for improvement in terms of shifts in both the formal education of bioinformatics engineers as well as the culture and approaches of managing scientific bioinformatics research and development efforts.

Funder

King Abdulaziz University, Jeddah, Saudi Arabia

Publisher

PeerJ

Subject

General Computer Science

Reference99 articles.

1. Open science challenges, benefits and tips in early career and beyond;Allen;PLoS Biology,2019

2. Ontology-based prediction of cancer driver genes;Althubaiti;Scientific Reports,2019

3. Software engineering for machine learning: a case study;Amershi,2019

4. FASTA and BLAST;Aryal,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3