Affiliation:
1. Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy
Abstract
In this paper, we consider the graph class denoted as Gen(∗;P3,C3,C5). It contains all graphs that can be generated by the split composition operation using path P3, cycle C3, and any cycle C5 as components. This graph class extends the well-known class of distance-hereditary graphs, which corresponds, according to the adopted generative notation, to Gen(∗;P3,C3). We also use the concept of stretch number for providing a relationship between Gen(∗;P3,C3) and the hierarchy formed by the graph classes DH(k), with k ≥1, where DH(1) also coincides with the class of distance-hereditary graphs. For the addressed graph class, we prove there exist efficient algorithms for several basic combinatorial problems, like recognition, stretch number, stability number, clique number, domination number, chromatic number, and graph isomorphism. We also prove that graphs in the new class have bounded clique-width.
Reference37 articles.
1. Almost distance-hereditary graphs;Aïder;Discrete Mathematics,2002
2. Distance-hereditary graphs;Bandelt;Journal of Combinatorial Theory, Series B,1986
3. A composition for perfect graphs;Bixby;Annals of Discrete Mathematics,1984
4. A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs;Brandstädt;Networks,1998
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献