A review of swarm intelligence algorithms deployment for scheduling and optimization in cloud computing environments

Author:

Qawqzeh Yousef1,Alharbi Mafawez T.2,Jaradat Ayman3,Abdul Sattar Khalid Nazim3

Affiliation:

1. Department of Computer Science and Engineering, Hafr Al Batin University, Hafr AL Batin, Saudi Arabia

2. Department of Natural and Applied Sciences, Buraydah Community College, Qassim University, Buraydeh, Qassim, Saudi Arabia

3. Computer Science and Information Department, Majmaah University, AlZulfi, Riyadh, Saudi Arabia

Abstract

Background This review focuses on reviewing the recent publications of swarm intelligence algorithms (particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), and the firefly algorithm (FA)) in scheduling and optimization problems. Swarm intelligence (SI) can be described as the intelligent behavior of natural living animals, fishes, and insects. In fact, it is based on agent groups or populations in which they have a reliable connection among them and with their environment. Inside such a group or population, each agent (member) performs according to certain rules that make it capable of maximizing the overall utility of that certain group or population. It can be described as a collective intelligence among self-organized members in certain group or population. In fact, biology inspired many researchers to mimic the behavior of certain natural swarms (birds, animals, or insects) to solve some computational problems effectively. Methodology SI techniques were utilized in cloud computing environment seeking optimum scheduling strategies. Hence, the most recent publications (2015–2021) that belongs to SI algorithms are reviewed and summarized. Results It is clear that the number of algorithms for cloud computing optimization is increasing rapidly. The number of PSO, ACO, ABC, and FA related journal papers has been visibility increased. However, it is noticeably that many recently emerging algorithms were emerged based on the amendment on the original SI algorithms especially the PSO algorithm. Conclusions The major intention of this work is to motivate interested researchers to develop and innovate new SI-based solutions that can handle complex and multi-objective computational problems.

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3