Analysis of the mixed teaching of college physical education based on the health big data and blockchain technology

Author:

Liu Shaoqing1,Li Cun1

Affiliation:

1. Langfang Health Vocational College, Langfang, Hebei, China

Abstract

In the era of health big data, with the continuous development of information technology, students’ physical health management also relies more on various information technologies. Blockchain, as an emerging technology in recent years, has the characteristics of high efficiency and intelligence. College physical education is an important part of college students’ health big data. Unlike cultural classes, physical education with its rich movements and activities, leaves teachers no time to monitor students’ real classroom performance. Therefore, we propose a human pose estimation method based on cross-attention-based Transformer multi-scale representation learning to monitor students’ class concentration. Firstly, the feature maps with different resolution are obtained by deep convolutional network and these feature maps are transformed into multi-scale visual markers. Secondly, we propose a cross-attention module with the multi-scales. The module reduces the redundancy of key point markers and the number of cross fusion operations through multiple interactions between feature markers with different resolutions and the strategy of moving key points for key point markers. Finally, the cross-attention fusion module extracts feature information of different scales from feature tags to form key tags. We can confirm the performance of the cross-attention module and the fusion module by the experimental results conducting on MSCOCO datasets, which can effectively promote the Transformer encoder to learn the association relationship between key points. Compared with the completive TokenPose method, our method can reduce the computational cost by 11.8% without reducing the performance.

Publisher

PeerJ

Subject

General Computer Science

Reference18 articles.

1. Spatiotemporal information perception network for human pose estimation in video streams;Bin;Journal of Computer Aided Design and Graphics,2022

2. CrossViT: cross-attention multi-scale vision transformer for image classification;Chen,2021

3. FasterPose: a faster simple baseline for human pose estimation;Dai;ACM Transactions on Multimedia Computing, Communications, and Applications,2022

4. Cross attention network for few-shot classification;Hou,2019

5. Occlusive pedestrian re identification integrating spatial attention and attitude estimation;Jing;Computer Research and Development,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3