Correct and stable sorting for overflow streaming data with a limited storage size and a uniprocessor

Author:

Chaikhan SulukORCID,Phimoltares SuphakantORCID,Lursinsap Chidchanok

Abstract

Tremendous quantities of numeric data have been generated as streams in various cyber ecosystems. Sorting is one of the most fundamental operations to gain knowledge from data. However, due to size restrictions of data storage which includes storage inside and outside CPU with respect to the massive streaming data sources, data can obviously overflow the storage. Consequently, all classic sorting algorithms of the past are incapable of obtaining a correct sorted sequence because data to be sorted cannot be totally stored in the data storage. This paper proposes a new sorting algorithm called streaming data sort for streaming data on a uniprocessor constrained by a limited storage size and the correctness of the sorted order. Data continuously flow into the storage as consecutive chunks with chunk sizes less than the storage size. A theoretical analysis of the space bound and the time complexity is provided. The sorting time complexity is O (n), where n is the number of incoming data. The space complexity is O (M), where M is the storage size. The experimental results show that streaming data sort can handle a million permuted data by using a storage whose size is set as low as 35% of the data size. This proposed concept can be practically applied to various applications in different fields where the data always overflow the working storage and sorting process is needed.

Funder

Development and Promotion of Science and Technology Talents Project

Thailand Research Fund

Publisher

PeerJ

Subject

General Computer Science

Reference40 articles.

1. Concom sorting algorithm;Agrawal,2015

2. Internet of things: a survey on enabling technologies, protocols, and applications;Al-Fuqaha;IEEE Communications Surveys & Tutorials,2015

3. Models and issues in data stream systems;Babcock,2002

4. Montres-nvm: an external sorting algorithm for hybrid memory;Bey Ahmed Khernache,2018

5. Quantiles on streams;Buragohain,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3