A novel chaotic transient search optimization algorithm for global optimization, real-world engineering problems and feature selection

Author:

Altay OsmanORCID,Varol Altay Elif

Abstract

Metaheuristic optimization algorithms manage the search process to explore search domains efficiently and are used efficiently in large-scale, complex problems. Transient Search Algorithm (TSO) is a recently proposed physics-based metaheuristic method inspired by the transient behavior of switched electrical circuits containing storage elements such as inductance and capacitance. TSO is still a new metaheuristic method; it tends to get stuck with local optimal solutions and offers solutions with low precision and a sluggish convergence rate. In order to improve the performance of metaheuristic methods, different approaches can be integrated and methods can be hybridized to achieve faster convergence with high accuracy by balancing the exploitation and exploration stages. Chaotic maps are effectively used to improve the performance of metaheuristic methods by escaping the local optimum and increasing the convergence rate. In this study, chaotic maps are included in the TSO search process to improve performance and accelerate global convergence. In order to prevent the slow convergence rate and the classical TSO algorithm from getting stuck in local solutions, 10 different chaotic maps that generate chaotic values instead of random values in TSO processes are proposed for the first time. Thus, ergodicity and non-repeatability are improved, and convergence speed and accuracy are increased. The performance of Chaotic Transient Search Algorithm (CTSO) in global optimization was investigated using the IEEE Congress on Evolutionary Computation (CEC)’17 benchmarking functions. Its performance in real-world engineering problems was investigated for speed reducer, tension compression spring, welded beam design, pressure vessel, and three-bar truss design problems. In addition, the performance of CTSO as a feature selection method was evaluated on 10 different University of California, Irvine (UCI) standard datasets. The results of the simulation showed that Gaussian and Sinusoidal maps in most of the comparison functions, Sinusoidal map in most of the real-world engineering problems, and finally the generally proposed CTSOs in feature selection outperform standard TSO and other competitive metaheuristic methods. Real application results demonstrate that the suggested approach is more effective than standard TSO.

Publisher

PeerJ

Subject

General Computer Science

Reference82 articles.

1. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems;Abdollahzadeh;Computers and Industrial Engineering,2021

2. Chaotic binary group search optimizer for feature selection;Abualigah;Expert Systems with Applications,2022

3. The arithmetic optimization algorithm;Abualigah;Computer Methods in Applied Mechanics and Engineering,2021a

4. Aquila optimizer: a novel meta-heuristic optimization algorithm;Abualigah;Computers and Industrial Engineering,2021b

5. Particle swarm optimization with adaptive inertia weight based on cumulative binomial probability;Agrawal;Evolutionary Intelligence,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3