Wormhole attack detection and mitigation model for Internet of Things and WSN using machine learning

Author:

Alshehri Asma Hassan

Abstract

The Internet of Things (IoT) is revolutionizing diverse sectors like business, healthcare, and the military, but its widespread adoption has also led to significant security challenges. IoT networks, in particular, face increasing vulnerabilities due to the rapid proliferation of connected devices within smart infrastructures. Wireless sensor networks (WSNs) comprise software, gateways, and small sensors that wirelessly transmit and receive data. WSNs consist of two types of nodes: generic nodes with sensing capabilities and gateway nodes that manage data routing. These sensor nodes operate under constraints of limited battery power, storage capacity, and processing capabilities, exposing them to various threats, including wormhole attacks. This study focuses on detecting wormhole attacks by analyzing the connectivity details of network nodes. Machine learning (ML) techniques are proposed as effective solutions to address these modern challenges in wormhole attack detection within sensor networks. The base station employs two ML models, a support vector machine (SVM) and a deep neural network (DNN), to classify traffic data and identify malicious nodes in the network. The effectiveness of these algorithms is validated using traffic generated by the NS3.37 simulator and tested against real-world scenarios. Evaluation metrics such as average recall, false positive rates, latency, end-to-end delay, response time, throughput, energy consumption, and CPU utilization are used to assess the performance of the proposed models. Results indicate that the proposed model outperforms existing methods in terms of efficacy and efficiency.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3