Leveraging deep contrastive learning for semantic interaction

Author:

Belcaid Mahdi1,Gonzalez Martinez Alberto12ORCID,Leigh Jason12ORCID

Affiliation:

1. University of Hawaii at Manoa, University of Hawaii at Manoa, Honolulu, HI, United States

2. University of Hawaii at Manoa, Laboratory for Advanced Visualization and Applications, Honolulu, Hawaii, United States

Abstract

The semantic interaction process seeks to elicit a user’s mental model as they interact with and query visualizations during a sense-making activity. Semantic interaction enables the development of computational models that capture user intent and anticipate user actions. Deep learning is proving to be highly effective for learning complex functions and is, therefore, a compelling tool for encoding a user’s mental model. In this paper, we show that deep contrastive learning significantly enhances semantic interaction in visual analytics systems. Our approach does so by allowing users to explore alternative arrangements of their data while simultaneously training a parametric algorithm to learn their evolving mental model. As an example of the efficacy of our approach, we deployed our model in Z-Explorer, a visual analytics extension to the widely used Zotero document management system. The user study demonstrates that this flexible approach effectively captures users’ mental data models without explicit hyperparameter tuning or even requiring prior machine learning expertise.

Funder

National Natural Science Foundation

Publisher

PeerJ

Subject

General Computer Science

Reference45 articles.

1. TensorFlow: large-scale machine learning on heterogeneous systems;Abadi,2015

2. Principal component analysis;Abdi;Wiley Interdisciplinary Reviews: Computational Statistics,2010

3. CoCoNet: an efficient deep learning tool for viral metagenome binning;Arisdakessian;Bioinformatics,2021

4. Dimensionality reduction for visualizing single-cell data using UMAP;Becht;Nature Biotechnology,2019

5. Deepsi: interactive deep learning for semantic interaction;Bian,2021a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3