A forensic-driven data model for automatic vehicles events analysis

Author:

Akremi Aymen1

Affiliation:

1. College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

Digital vision technologies emerged exponentially in all living areas to watch, play, control, or track events. Security checkpoints have benefited also from those technologies by integrating dedicated cameras in studied locations. The aim is to manage the vehicles accessing the inspection security point and fetching for any suspected ones. However, the gathered data volume continuously increases each day, making their analysis very hard and time-consuming. This paper uses semantic-based techniques to model the data flow between the cameras, checkpoints, and administrators. It uses ontologies to deal with the increased data size and its automatic analysis. It considers forensics requirements throughout the creation of the ontology modules to ensure the records’ admissibility for any possible investigation purposes. Ontology-based data modeling will help in the automatic events search and correlation to track suspicious vehicles efficiently.

Funder

the Deanship of Scientific Research at Umm Al-Qura University

Publisher

PeerJ

Subject

General Computer Science

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3