Deep reinforcement learning models in auction item price prediction: an optimisation study of a cross-interval quotation strategy

Author:

Ke Da1ORCID,Fan Xianhua2

Affiliation:

1. School of Management, Huazhong University of Science and Technology, Wuhan, Hubei, China

2. School of Economics and Management, China University of Geosciences, Wuhan, Hubei, China

Abstract

In the contemporary digitalization landscape and technological advancement, the auction industry undergoes a metamorphosis, assuming a pivotal role as a transactional paradigm. Functioning as a mechanism for pricing commodities or services, the procedural intricacies and efficiency of auctions directly influence market dynamics and participant engagement. Harnessing the advancing capabilities of artificial intelligence (AI) technology, the auction sector proactively integrates AI methodologies to augment efficacy and enrich user interactions. This study delves into the intricacies of the price prediction challenge within the auction domain, introducing a sophisticated RL-GRU framework for price interval analysis. The framework commences by adeptly conducting quantitative feature extraction of commodities through GRU, subsequently orchestrating dynamic interactions within the model’s environment via reinforcement learning techniques. Ultimately, it accomplishes the task of interval division and recognition of auction commodity prices through a discerning classification module. Demonstrating precision exceeding 90% across publicly available and internally curated datasets within five intervals and exhibiting superior performance within eight intervals, this framework contributes valuable technical insights for future endeavours in auction price interval prediction challenges.

Publisher

PeerJ

Reference27 articles.

1. Scraping and preprocessing commercial auction data for fraud classification;Alzahrani,2018

2. Buy prices in online auctions: irrationality on the internet?;Budish;Economics Letters,2001

3. A comparison of LSTM and GRU networks for learning symbolic sequences;Cahuantzi,2023

4. Reinforcement learning applied to forex trading;Carapuço;Applied Soft Computing,2018

5. Multi-DQN: an ensemble of deep q-learning agents for stock market forecasting;Carta;Expert Systems with Applications,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3