Reverse engineering approach for improving the quality of mobile applications

Author:

Elsayed Eman K.1ORCID,ElDahshan Kamal A.2ORCID,El-Sharawy Enas E.13ORCID,Ghannam Naglaa E.1ORCID

Affiliation:

1. Department of Mathematical and Computer Science, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt

2. Department of Mathematical and Computer Science, Faculty of Science, Al-Azhar University, Cairo, Egypt

3. Computer Department, College of Science and Humanities in Jubail, Imam Abdulrahman Bin Faisal University, Kingdom of Saudi Arabia

Abstract

BackgroundPortable-devices applications (Android applications) are becoming complex software systems that must be developed quickly and continuously evolved to fit new user requirements and execution contexts. Applications must be produced rapidly and advance persistently in order to fit new client requirements and execution settings. However, catering to these imperatives may bring about poor outline decisions on design choices, known as anti-patterns, which may possibly corrupt programming quality and execution. Thus, the automatic detection of anti-patterns is a vital process that facilitates both maintenance and evolution tasks. Additionally, it guides developers to refactor their applications and consequently enhance their quality.MethodsWe proposed a general method to detect mobile applications’ anti-patterns that can detect both semantic and structural design anti-patterns. The proposed method is via reverse-engineering and ontology by using a UML modeling environment, an OWL ontology-based platform and ontology-driven conceptual modeling. We present and test a new method that generates the OWL ontology of mobile applications and analyzes the relationships among object-oriented anti-patterns and offer methods to resolve the anti-patterns by detecting and treating 15 different design’s semantic and structural anti-patterns that occurred in analyzing of 29 mobile applications. We choose 29 mobile applications randomly. Selecting a browser is not a criterion in this method because the proposed method is applied on a design level. We demonstrate a semantic integration method to reduce the incidence of anti-patterns using the ontology merging on mobile applications.ResultsThe proposed method detected 15 semantic and structural design anti-patterns which have appeared 1,262 times in a random sample of 29 mobile applications. The proposed method introduced a new classification of the anti-patterns divided into four groups. “The anti-patterns in the class group” is the most group that has the maximum occurrences of anti-patterns and “The anti-patterns in the operation group” is the smallest one that has the minimum occurrences of the anti-patterns which are detected by the proposed method. The results also showed the correlation between the selected tools which we used as Modelio, the Protégé platform, and the OLED editor of the OntoUML. The results showed that there was a high positive relation between Modelio and Protégé which implies that the combination between both increases the accuracy level of the detection of anti-patterns. In the evaluation and analyzing the suitable integration method, we applied the different methods on homogeneous mobile applications and found that using ontology increased the detection percentage approximately by 11.3% in addition to guaranteed consistency.

Publisher

PeerJ

Subject

General Computer Science

Reference32 articles.

1. iPerfDetector: characterizing and detecting performance anti-patterns in iOS applications;Afjehei;Empirical Software Engineering,2019

2. Android apps consistency scrutinized;Alharbi,2014

3. Cloud security engineering;Aljawarneh;Future Generation Computer Systems,2017

4. A comparison of android reverse engineering tools via program behaviors validation based on intermediate languages transformation;Arnatovich;IEEE Access,2018

5. Ontology-based search for risk-relevant PMS data;Bartussek,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3