DMPNet: densely connected multi-scale pyramid networks for crowd counting

Author:

Li Pengfei1,Zhang Min1,Wan Jian1,Jiang Ming1

Affiliation:

1. Computer & Software School, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

Abstract

Crowd counting has been widely studied by deep learning in recent years. However, due to scale variation caused by perspective distortion, crowd counting is still a challenging task. In this paper, we propose a Densely Connected Multi-scale Pyramid Network (DMPNet) for count estimation and the generation of high-quality density maps. The key component of our network is the Multi-scale Pyramid Network (MPN), which can extract multi-scale features of the crowd effectively while keeping the resolution of the input feature map and the number of channels unchanged. To increase the information transfer between the network layer, we used dense connections to connect multiple MPNs. In addition, we also designed a novel loss function, which can help our model achieve better convergence. To evaluate our method, we conducted extensive experiments on three challenging benchmark crowd counting datasets. Experimental results show that compared with the state-of-the-art algorithms, DMPNet performs well in both parameters and results. The code is available at: https://github.com/lpfworld/DMPNet.

Funder

Zhejiang Provincial Technical Plan Project

Xiaoshan District Science and Technology Plan Project

Publisher

PeerJ

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MLANet: multi-level attention network with multi-scale feature fusion for crowd counting;Cluster Computing;2024-03-04

2. Multi-branch Segmentation-guided Attention Network for crowd counting;Journal of Visual Communication and Image Representation;2023-12

3. Multi-Channel Gaussian Derivative Neural Networks for Crowd Analysis;2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS);2023-07-04

4. A Selective Multi-Unit Group Filter-Based Flexible Fast Light-CNN Training;2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3