A novel framework for storage assignment optimization inspired by finite element method

Author:

Tabatabaei Seyed-Kourosh1,Fatahi Valilai Omid2,Abedian Ali3,Khalilzadeh Mohammad1

Affiliation:

1. Industrial Engineering Group, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Mathematics & Logistics Department, Jacobs University Bremen, Bremen, Bremen, Germany

3. Aerospace Engineering Department, Sharif University of Technology, Tehran, Tehran, Iran

Abstract

Considering necessary fundamental and structural changes in the production and manufacturing industries to fulfill the industry 4.0 paradigm, the proposal of new ideas and frameworks for operations management of production and manufacturing system is inevitable. This research focuses on traditional methods proposed for storage assignment problem and struggles for new methods and definitions for industry 4.0 based storage assignment concepts. At the first step, the paper proposes a new definition of storage assignment and layout problem for fulfilling storage mechanism agility in terms of automated store and retrieval process (AS/RS) in modern inventories. Then considering the shortcomings of traditional algorithms for storage assignment problem, the paper contributes a new algorithm called SAO/FEM (storage assignment optimization technique), inspired from mechanical engineering discipline for analysis and optimization of storage assignment problem. The proposed new algorithm about stress distribution analogy, and the help of the Finite Element Method and minimum total potential energy theory, proposes a new model for storage assignment optimization. The efficiency of the proposed algorithm in terms of calculation time and the best answer investigated through numerical examples. The article has developed an application for SAO/FEM algorithm as a value creation module and applied new optimized storage positioning in the warehouses.

Publisher

PeerJ

Subject

General Computer Science

Reference56 articles.

1. A novel model for optimisation of logistics and manufacturing operation service composition in Cloud manufacturing system focusing on cloud-entropy;Aghamohammadzadeh;International Journal of Production Research,2019

2. Metaheuristic based control of a flow rack automated storage retrieval system;Bessenouci;Journal of Intelligent Manufacturing,2012

3. Optimization of an automated storage and retrieval systems by swarm intelligence;Brezovnik;Procedia Engineering,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3