Diffusion models in text generation: a survey

Author:

Yi Qiuhua1,Chen Xiangfan1,Zhang Chenwei2,Zhou Zehai1,Zhu Linan1,Kong Xiangjie1ORCID

Affiliation:

1. College of Computer Science and Technology, Zhejiang University of Technology, HangZhou, China

2. School of Faculty of Education, University of Hong Kong, Hong Kong, China

Abstract

Diffusion models are a kind of math-based model that were first applied to image generation. Recently, they have drawn wide interest in natural language generation (NLG), a sub-field of natural language processing (NLP), due to their capability to generate varied and high-quality text outputs. In this article, we conduct a comprehensive survey on the application of diffusion models in text generation. We divide text generation into three parts (conditional, unconstrained, and multi-mode text generation, respectively) and provide a detailed introduction. In addition, considering that autoregressive-based pre-training models (PLMs) have recently dominated text generation, we conduct a detailed comparison between diffusion models and PLMs in multiple dimensions, highlighting their respective advantages and limitations. We believe that integrating PLMs into diffusion is a valuable research avenue. We also discuss current challenges faced by diffusion models in text generation and propose potential future research directions, such as improving sampling speed to address scalability issues and exploring multi-modal text generation. By providing a comprehensive analysis and outlook, this survey will serve as a valuable reference for researchers and practitioners interested in utilizing diffusion models for text generation tasks.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Reference86 articles.

1. Structured denoising diffusion models in discrete state-spaces;Austin;Advances in Neural Information Processing Systems,2021

2. One transformer fits all distributions in multi-modal diffusion at scale;Bao,2023

3. Findings of the 2014 workshop on statistical machine translation;Bojar,2014

4. Findings of the 2016 conference on machine translation;Bojar,2016

5. Unleashing transformers: parallel token prediction with discrete absorbing diffusion for fast high-resolution image generation from vector-quantized codes;Bond-Taylor,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3