Performance analysis for similarity data fusion model for enabling time series indexing in internet of things applications

Author:

Younan Mina1ORCID,Houssein Essam H.1ORCID,Elhoseny Mohamed23,Ali Abd El-mageid1

Affiliation:

1. Faculty of Computers and Information, Minia University, Minia, Egypt

2. Faculty of Computers and Information, Mansoura University, Mansoura, Egypt

3. Department of Computer Science, American University in the Emirates, Emirates, United Arab Emirates

Abstract

The Internet of Things (IoT) has penetrating all things and objects around us giving them the ability to interact with the Internet, i.e., things become Smart Things (SThs). As a result, SThs produce massive real-time data (i.e., big IoT data). Smartness of IoT applications bases mainly on services such as automatic control, events handling, and decision making. Consumers of the IoT services are not only human users, but also SThs. Consequently, the potential of IoT applications relies on supporting services such as searching, retrieving, mining, analyzing, and sharing real-time data. For enhancing search service in the IoT, our previous work presents a promising solution, called Cluster Representative (ClRe), for indexing similar SThs in IoT applications. ClRe algorithms could reduce similar indexing by O(K − 1), where K is number of Time Series (TS) in a cluster. Multiple extensions for ClRe algorithms were presented in another work for enhancing accuracy of indexed data. In this theme, this paper studies performance analysis of ClRe algorithms, proposes two novel execution methods: (a) Linear execution (LE) and (b) Pair-merge execution (PME), and studies sorting impact on TS execution for enhancing similarity rate for some ClRe extensions. The proposed execution methods are evaluated with real examples and proved using Szeged-weather dataset on ClRe 3.0 and its extensions; where they produce representatives with higher similarities compared to the other extensions. Evaluation results indicate that PME could improve performance of ClRe 3.0 by = 20.5%, ClRe 3.1 by = 17.7%, and ClRe 3.2 by = 6.4% in average.

Publisher

PeerJ

Subject

General Computer Science

Reference45 articles.

1. Real-time probabilistic data fusion for large-scale IoT applications;Akbar;IEEE Access,2018

2. Two tier data reduction technique for reducing data transmission in IoT sensors;Al-Qurabat,2019

3. IoT crawler with behavior analyzer at fog layer for detecting malicious nodes;Albdour;International Journal of Communication Networks and Information Security,2020

4. IoT data processing at the edge with named data networking;Amadeo,2018

5. The MIoT paradigm: main features and an ad-hoc crawler;Baldassarre;Future Generation Computer Systems,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3