Sentiment classification for employees reviews using regression vector- stochastic gradient descent classifier (RV-SGDC)

Author:

Gaye Babacar1,Zhang Dezheng1,Wulamu Aziguli1

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology, Beijing, China

Abstract

The satisfaction of employees is very important for any organization to make sufficient progress in production and to achieve its goals. Organizations try to keep their employees satisfied by making their policies according to employees’ demands which help to create a good environment for the collective. For this reason, it is beneficial for organizations to perform staff satisfaction surveys to be analyzed, allowing them to gauge the levels of satisfaction among employees. Sentiment analysis is an approach that can assist in this regard as it categorizes sentiments of reviews into positive and negative results. In this study, we perform experiments for the world’s big six companies and classify their employees’ reviews based on their sentiments. For this, we proposed an approach using lexicon-based and machine learning based techniques. Firstly, we extracted the sentiments of employees from text reviews and labeled the dataset as positive and negative using TextBlob. Then we proposed a hybrid/voting model named Regression Vector-Stochastic Gradient Descent Classifier (RV-SGDC) for sentiment classification. RV-SGDC is a combination of logistic regression, support vector machines, and stochastic gradient descent. We combined these models under a majority voting criteria. We also used other machine learning models in the performance comparison of RV-SGDC. Further, three feature extraction techniques: term frequency-inverse document frequency (TF-IDF), bag of words, and global vectors are used to train learning models. We evaluated the performance of all models in terms of accuracy, precision, recall, and F1 score. The results revealed that RV-SGDC outperforms with a 0.97 accuracy score using the TF-IDF feature due to its hybrid architecture.

Funder

The University of Science and Technology Beijing

Publisher

PeerJ

Subject

General Computer Science

Reference43 articles.

1. Ai meta-learners and extra-trees algorithm for the detection of phishing websites;Alsariera;IEEE Access,2020

2. Aspect-sentiment embeddings for company profiling and employee opinion mining;Bajpai,2019

3. How many trees in a random forest?;Baranauskas,2012

4. ABCDM: an attention-based bidirectional CNN-RNN deep model for sentiment analysis;Basiri;Future Generation Computer Systems,2021

5. Ensemble based approach for intrusion detection using extra tree classifier;Bhati,2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3