Affiliation:
1. School of Computer and Communication Engineering, University of Science and Technology, Beijing, China
Abstract
The satisfaction of employees is very important for any organization to make sufficient progress in production and to achieve its goals. Organizations try to keep their employees satisfied by making their policies according to employees’ demands which help to create a good environment for the collective. For this reason, it is beneficial for organizations to perform staff satisfaction surveys to be analyzed, allowing them to gauge the levels of satisfaction among employees. Sentiment analysis is an approach that can assist in this regard as it categorizes sentiments of reviews into positive and negative results. In this study, we perform experiments for the world’s big six companies and classify their employees’ reviews based on their sentiments. For this, we proposed an approach using lexicon-based and machine learning based techniques. Firstly, we extracted the sentiments of employees from text reviews and labeled the dataset as positive and negative using TextBlob. Then we proposed a hybrid/voting model named Regression Vector-Stochastic Gradient Descent Classifier (RV-SGDC) for sentiment classification. RV-SGDC is a combination of logistic regression, support vector machines, and stochastic gradient descent. We combined these models under a majority voting criteria. We also used other machine learning models in the performance comparison of RV-SGDC. Further, three feature extraction techniques: term frequency-inverse document frequency (TF-IDF), bag of words, and global vectors are used to train learning models. We evaluated the performance of all models in terms of accuracy, precision, recall, and F1 score. The results revealed that RV-SGDC outperforms with a 0.97 accuracy score using the TF-IDF feature due to its hybrid architecture.
Funder
The University of Science and Technology Beijing
Reference43 articles.
1. Ai meta-learners and extra-trees algorithm for the detection of phishing websites;Alsariera;IEEE Access,2020
2. Aspect-sentiment embeddings for company profiling and employee opinion mining;Bajpai,2019
3. How many trees in a random forest?;Baranauskas,2012
4. ABCDM: an attention-based bidirectional CNN-RNN deep model for sentiment analysis;Basiri;Future Generation Computer Systems,2021
5. Ensemble based approach for intrusion detection using extra tree classifier;Bhati,2020
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献