Assessing anthropogenic heat flux of public cloud data centers: current and future trends

Author:

Baniata Hamza1,Mahmood Sami23,Kertesz Attila1

Affiliation:

1. Software Engineering Department, University of Szeged, Szeged, Hungary

2. Physics Department, The University of Jordan, Amman, Jordan

3. Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States of America

Abstract

Global average temperature had been significantly increasing during the past century, mainly due to the growing rates of greenhouse gas (GHG) emissions, leading to a global warming problem. Many research works indicated other causes of this problem, such as the anthropogenic heat flux (AHF). Cloud computing (CC) data centers (DCs), for example, perform massive computational tasks for end users, leading to emit huge amounts of waste heat towards the surrounding (local) atmosphere in the form of AHF. Out of the total power consumption of a public cloud DC, nearly 10% is wasted in the form of heat. In this paper, we quantitatively and qualitatively analyze the current state of AHF emissions of the top three cloud service providers (i.e., Google, Azure and Amazon) according to their average energy consumption and the global distribution of their DCs. In this study, we found that Microsoft Azure DCs emit the highest amounts of AHF, followed by Amazon and Google, respectively. We also found that Europe is the most negatively affected by AHF of public DCs, due to its small area relative to other continents and the large number of cloud DCs within. Accordingly, we present mean estimations of continental AHF density per square meter. Following our results, we found that the top three clouds (with waste heat at a rate of 1,720.512 MW) contribute an average of more than 2.8% out of averaged continental AHF emissions. Using this percentage, we provide future trends estimations of AHF densities in the period [2020–2100]. In one of the presented scenarios, our estimations predict that by 2100, AHF of public clouds DCs will reach 0.01 Wm−2.

Funder

Hungarian Government and the European Regional Development Fund

Hungarian Scientific Research Fund

University of Szeged Open Access Fund

Publisher

PeerJ

Subject

General Computer Science

Reference57 articles.

1. FlexiGIS: an open source GIS-based platform for the optimisation of flexibility options in urban energy systems;Alhamwi;Energy Procedia,2018

2. On global electricity usage of communication technology: trends to 2030;Andrae;Challenges,2015

3. 2016 Trends in Datacenter Technologies;Ascierto,2015

4. Data center networking equipment-issues and best practices;Ashrae;Whitepaper Prep. by ASHRAE Tech. Comm,2015

5. The development of a hydrocarbon high temperature heat pump for waste heat recovery;Bamigbetan;Energy,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3