Pairing algorithm for varying data in cluster based heterogeneous wireless sensor networks

Author:

Shaheen Zahida1,Sattar Kashif2,Ahmed Mukhtar34

Affiliation:

1. Pir Mehr Ali Shah Arid Agriculture, University Institute of Information Technology (UIIT), Rawalpindi, Punjab, Pakistan

2. Pir Mehr Ali Shah Arid Agriculture University, University Institute of Information Technology (UIIT), Rawalpindi, Punjab, Pakistan

3. Pir Mehr Ali Shah Arid Agriculture University, Department of Agronomy, Rawalpindi, Punjab, Pakistan

4. Department of Biological Systems Engineering, Washington State University, Pullman, United States of America

Abstract

In wireless sensor networks (WSNs), clustering is employed to extend the network’s lifespan. Each cluster has a designated cluster head. Pairing is another technique used within clustering to enhance network longevity. In this technique, nodes are grouped into pairs, with one node in an active state and the other in a sleep state to conserve energy. However, this pairing can lead to communication issues with the cluster head, as nodes in sleep mode cannot transmit data, potentially causing data loss. To address this issue, this study introduces an innovative approach called the “Awake Sleep Heterogeneous Nodes’ Pairing” (ASHNP) algorithm. This algorithm aims to improve transmission efficiency in WSNs operating in heterogeneous environments. In contrast, Energy Efficient Sleep Awake Aware (EESAA) algorithm are customized for homogeneous environments (EESAA), while suitable for homogeneous settings, encounters challenges in handling data loss from sleep nodes. On the other hand, Energy and Traffic Aware Sleep Awake (ETASA) struggles with listening problems, limiting its efficiency in diverse environments. Through comprehensive comparative analysis, ASHNP demonstrates higher performance in data transmission efficiency, overcoming the shortcomings of EESAA and ETASA. Additionally, comparisons across various parameters, including energy consumption and the number of dead nodes, highlight ASHNP’s effectiveness in enhancing network reliability and resource utilization. These findings underscore the significance of ASHNP as a promising solution for optimizing data transmission in WSNs, particularly in heterogeneous environments. The analysis discloses that ASHNP reliably outperforms EESAA in maintaining node energy, with differences ranging from 1.5% to 10% across various rounds. Specifically, ASHNP achieves a data transmission rate 5.23% higher than EESAA and 21.73% higher than ETASA. These findings underscore the strength of ASHNP in sustaining node activity levels, showcasing its superiority in preserving network integrity and ensuring efficient data transmission across multiple rounds.

Publisher

PeerJ

Reference39 articles.

1. Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods;Abdulzahra;Internet of Things,2023

2. Sleep-awake energy efficient distributed clustering algorithm for wireless sensor networks;Ahmed;Computers and Electrical Engineering,2016

3. CEEC: centralized energy efficient clustering a new routing protocol for WSNs;Aslam,2012

4. Mocraw: a meta-heuristic optimized cluster head selection based routing algorithm for wsns;Chaurasia;Ad Hoc Networks,2023

5. Distributed learning algorithm applications to the scheduling of wireless sensor networks;Daneshfar,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3