Detection of sitting posture using hierarchical image composition and deep learning

Author:

Kulikajevas Audrius1,Maskeliunas Rytis1,Damaševičius Robertas23ORCID

Affiliation:

1. Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania

2. Department of Applied Informatics, Vytautas Magnus University, Kaunas, Lithuania

3. Faculty of Applied Mathematics, Silesian University of Technology, Gliwice, Poland

Abstract

Human posture detection allows the capture of the kinematic parameters of the human body, which is important for many applications, such as assisted living, healthcare, physical exercising and rehabilitation. This task can greatly benefit from recent development in deep learning and computer vision. In this paper, we propose a novel deep recurrent hierarchical network (DRHN) model based on MobileNetV2 that allows for greater flexibility by reducing or eliminating posture detection problems related to a limited visibility human torso in the frame, i.e., the occlusion problem. The DRHN network accepts the RGB-Depth frame sequences and produces a representation of semantically related posture states. We achieved 91.47% accuracy at 10 fps rate for sitting posture recognition.

Publisher

PeerJ

Subject

General Computer Science

Reference70 articles.

1. A skeleton-free fall detection system from depth images using random decision forest;Abobakr;IEEE Systems Journal,2018

2. A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection;Afza;Image and Vision Computing,2021

3. TAAWUN: a decision fusion and feature specific road detection approach for connected autonomous vehicles;Alam;Mobile Networks and Applications,2019

4. Using smart offices to predict occupational stress;Alberdi;International Journal of Industrial Ergonomics,2018

5. Iot framework for 3d body posture visualization;Arnold;IEEE International Conference on Electro Information Technology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3