Multi-user multi-objective computation offloading for medical image diagnosis

Author:

Liu Qi12,Tian Zhao3,Zhao Guohua4,Cui Yong5,Lin Yusong236

Affiliation:

1. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China

2. Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China

3. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China

4. Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

5. School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China

6. Hanwei IoT Institute, Zhengzhou University, Zhengzhou, China

Abstract

Computation offloading has effectively solved the problem of terminal devices computing resources limitation in hospitals by shifting the medical image diagnosis task to the edge servers for execution. Appropriate offloading strategies for diagnostic tasks are essential. However, the risk awareness of each user and the multiple expenses associated with processing tasks have been ignored in prior works. In this article, a multi-user multi-objective computation offloading for medical image diagnosis is proposed. First, the prospect theoretic utility function of each user is designed considering the delay, energy consumption, payment, and risk awareness. Second, the computation offloading problem including the above factors is defined as a distributed optimization problem, which with the goal of maximizing the utility of each user. The distributed optimization problem is then transformed into a non-cooperative game among the users. The exact potential game proves that the non-cooperative game has Nash equilibrium points. A low-complexity computation offloading algorithm based on best response dynamics finally is proposed. Detailed numerical experiments demonstrate the impact of different parameters and convergence in the algorithm on the utility function. The result shows that, compare with four benchmarks and four heuristic algorithms, the proposed algorithm in this article ensures a faster convergence speed and achieves only a 1.14% decrease in the utility value as the number of users increases.

Funder

National Natural Science Foundation of China

Collaborative Innovation Major Project of Zhengzhou

Key Technologies R&D Program of Henan Province

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3