Detection of railway catenary insulator defects based on improved YOLOv5s

Author:

Tang Jing12,Yu Minghui2,Wu Minghu12

Affiliation:

1. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan, China

2. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China

Abstract

In this article, a method of railway catenary insulator defects detection is proposed, named RCID-YOLOv5s. In order to improve the network’s ability to detect defects in railway catenary insulators, a small object detection layer is introduced into the network model. Moreover, the Triplet Attention (TA) module is introduced into the network model, which pays more attention to the information on the defective parts of the railway catenary insulator. Furthermore, the pruning operations are performed on the network model to reduce the computational complexity. Finally, by comparing with the original YOLOv5s model, experiment results show that the average precision (AP) of the proposed RCID-YOLOv5s is highest at 98.0%, which can be used to detect defects in railway catenary insulators accurately.

Funder

Special Project of Central Government

Natural Science Foundation of Hubei Province

Hubei University of Technology Ph. D. Research Startup Fund Project

Publisher

PeerJ

Subject

General Computer Science

Reference32 articles.

1. Speeded-Up Robust Features (SURF);Bay;Computer Vision and Image Understanding,2008

2. Histograms of oriented gradients for human detection;Dalal,2005

3. High-speed railway fastener detection based on a line local binary pattern;Fan;IEEE Signal Processing Letters,2018

4. Fast R-CNN;Girshick,2015

5. yolov5;Glenn,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3