A study on the classification of stylistic and formal features in English based on corpus data testing

Author:

Li Shuhui1

Affiliation:

1. School of Foreign Studies, South China Agricultural University, Guangzhou, Guangdong, China

Abstract

The traditional statistical and rule combination algorithm lacks the determination of the inner cohesion of words, and the N-gram algorithm does not limit the length of N, which will produce a large number of invalid word strings, consume time and reduce the efficiency of the experiment. Therefore, this article first constructs a Chinese neologism corpus, adopts improved multi-PMI, and sets a double threshold to filter new words. Branch entropy is used to calculate the probabilities between words. Finally, the N-gram algorithm is used to segment the preprocessed corpus. We use multi-word mutual information and a double mutual information threshold to identify new words and improve their recognition accuracy. Experimental results show that the algorithm proposed in this article has been improved in accuracy, recall and F measures value by 7%, 3% and 5% respectively, which can promote the sharing of language information resources so that people can intuitively and accurately obtain language information services from the internet.

Funder

2022 Guangdong Provincial Philosophy and Social Sciences Planning Project

Publisher

PeerJ

Subject

General Computer Science

Reference17 articles.

1. Language resources and language problems;Chen;Journal of Yunnan Normal University, Philosophy and Social Sciences Edition,2009

2. Information extraction from Chinese plant species diversity description texts;Duan;Modern Library and Information Technology,2016

3. Geliable lexical borrowings in China English on the internet;Fu;Overseas English,2012

4. Impact analysis of adverbs for sentiment classification on Twitter product reviews;Haider;Concurrency and Computation: Practice and Experience,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3