Context-based sentiment analysis on customer reviews using machine learning linear models

Author:

Chinnalagu Anandan1,Durairaj Ashok Kumar1

Affiliation:

1. Computer Science, Government Arts College (Affiliated to Bharathidasan University, Tiruchirappalli), Kulithalai, Karur, Tamil Nadu, India

Abstract

Customer satisfaction and their positive sentiments are some of the various goals for successful companies. However, analyzing customer reviews to predict accurate sentiments have been proven to be challenging and time-consuming due to high volumes of collected data from various sources. Several researchers approach this with algorithms, methods, and models. These include machine learning and deep learning (DL) methods, unigram and skip-gram based algorithms, as well as the Artificial Neural Network (ANN) and bag-of-word (BOW) regression model. Studies and research have revealed incoherence in polarity, model overfitting and performance issues, as well as high cost in data processing. This experiment was conducted to solve these revealing issues, by building a high performance yet cost-effective model for predicting accurate sentiments from large datasets containing customer reviews. This model uses the fastText library from Facebook’s AI research (FAIR) Lab, as well as the traditional Linear Support Vector Machine (LSVM) to classify text and word embedding. Comparisons of this model were also done with the author’s a custom multi-layer Sentiment Analysis (SA) Bi-directional Long Short-Term Memory (SA-BLSTM) model. The proposed fastText model, based on results, obtains a higher accuracy of 90.71% as well as 20% in performance compared to LSVM and SA-BLSTM models.

Publisher

PeerJ

Subject

General Computer Science

Reference29 articles.

1. Evaluation of sentiment analysis via word embedding and RNN variants for Amazon online reviews;Alharbi;Hindawai, Mathematical Problems in Engineering,2021

2. Sentiment and emotion in social media COVID-19 conversations: SAB-LSTM approach;Ashok Kumar,2020

3. Enriching Word Vector with Subword Information;Bojanowski,2017

4. Sentimental Analysis of COVID-19 Tweets Using Deep Learning Models

5. Very deep convolutional networks for text classification;Conneau,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3