Fast and accurate face recognition system using MORSCMs-LBP on embedded circuits

Author:

Hosny Khalid M.1,Hamad Aya Y.2,Elkomy Osama1,Mohamed Ehab R.1

Affiliation:

1. Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt

2. Department of Information Technology/Information Technology and Computer Science, Sinai University, North Sinai, Al Arish, Egypt

Abstract

Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lead to infection, so they have become undesirable and we can replace them by using facial recognition instead. With the development of technology and the availability of nano devices like the Raspberry Pi, such applications can be implemented easily. This study presents an efficient face recognition system in which the face image is taken by a standalone camera and then passed to the Raspberry Pi to extract the face features and then compare them with the database. This approach is named MORSCMs-LBP by combining two algorithms for feature extraction: Local Binary Pattern (LBP) as a local feature descriptor and radial substituted Chebyshev moments (MORSCMs) as a global feature descriptor. The significant advantage of this method is that it combines the local and global features into a single feature vector from the detected faces. The proposed approach MORSCMs-LBP has been implemented on the Raspberry Pi 4 computer model B with 1 GB of RAM using C++ OpenCV. We assessed our method on various benchmark datasets: face95 with an accuracy of 99.0278%, face96 with an accuracy of 99.4375%, and grimace with 100% accuracy. We evaluated the proposed MORSCMs-LBP technique against other recently published approaches; the comparison shows a significant improvement in favour of the proposed approach.

Publisher

PeerJ

Subject

General Computer Science

Reference60 articles.

1. Face recognition with local binary patterns;Ahonen,2004

2. Color face recognition by using quaternion and deep neural networks;Alami,2019

3. Visual tree detection for autonomous navigation in forest environment;Ali,2008

4. Face Recognition Using Raspberry PI;Ambre,2020

5. Real-time surveillance through face recognition using HOG and feedforward neural networks;Awais;IEEE Access,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3