Multi-label emotion classification of Urdu tweets

Author:

Ashraf Noman1,Khan Lal2ORCID,Butt Sabur1ORCID,Chang Hsien-Tsung234ORCID,Sidorov Grigori1,Gelbukh Alexander1ORCID

Affiliation:

1. CIC, Instituto Politécnico Nacional, Mexico City, Mexico

2. Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan

3. Artificial Intelligence Research Center, Chang Gung University, Taoyuan, Taiwan

4. Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan

Abstract

Urdu is a widely used language in South Asia and worldwide. While there are similar datasets available in English, we created the first multi-label emotion dataset consisting of 6,043 tweets and six basic emotions in the Urdu Nastalíq script. A multi-label (ML) classification approach was adopted to detect emotions from Urdu. The morphological and syntactic structure of Urdu makes it a challenging problem for multi-label emotion detection. In this paper, we build a set of baseline classifiers such as machine learning algorithms (Random forest (RF), Decision tree (J48), Sequential minimal optimization (SMO), AdaBoostM1, and Bagging), deep-learning algorithms (Convolutional Neural Networks (1D-CNN), Long short-term memory (LSTM), and LSTM with CNN features) and transformer-based baseline (BERT). We used a combination of text representations: stylometric-based features, pre-trained word embedding, word-based n-grams, and character-based n-grams. The paper highlights the annotation guidelines, dataset characteristics and insights into different methodologies used for Urdu based emotion classification. We present our best results using micro-averaged F1, macro-averaged F1, accuracy, Hamming loss (HL) and exact match (EM) for all tested methods.

Funder

CONACYT

Secretaría de Investigación y Posgrado of the Instituto Politécnico Nacional, Mexico

Publisher

PeerJ

Subject

General Computer Science

Reference79 articles.

1. Experiences in building Urdu wordnet;Adeeba,2011

2. Emotions from text: machine learning for text-based emotion prediction;Alm,2005

3. Identifying expressions of emotion in text;Aman,2007

4. Multi-label emotion classification using content-based features in Twitter;Ameer;Computación y Sistemas,2021

5. Threatening language detection and target identification in Urdu tweets;Amjad;IEEE Access,2021

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3