Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize

Author:

Wang Long1,Pokharel Sabin Saurav1,Chen Fajun1

Affiliation:

1. Department of Entomology, Nanjing Agricultural University, Nanjing, China

Abstract

Background The cultivation of Bt maize (maize genetically modified with Bacillus thuringiensis) continues to expand globally. Arbuscular mycorrhizal fungi (AMF), an important kind of microorganism closely related to soil fertility and plant nutrition, may influence the ecological risk of target lepidopteran pests in Bt crops. Methods In this study, transgenic Bt maize (Line IE09S034 with Cry1Ie vs. its parental line of non-Bt maize cv. Xianyu335) was inoculated with a species of AMF, Glomus caledonium (GC). Its effects on the food utilization, reproduction and development of armyworm, Mythimna separata, were studied in a potted experiment from 2017 to 2018. Results GC inoculation increased the AMF colonization of both modified and non-modified maize, and also increased the grain weight per plant and 1,000-grain weight of modified and non-modified maize. However, the cultivation of Bt maize did not significantly affect the AMF colonization. The feeding of M. separata with Bt maize resulted in a notable decrease in RCR (relative consumption rate), RGR (relative growth rate), AD (approximate digestibility), ECD (efficiency of conversion of digested food) and ECI (efficiency of conversion of ingested food) parameters in comparison to those observed in larvae fed with non-Bt maize in 2017 and 2018, regardless of GC inoculation. Furthermore, remarkable prolongation of larval life span and decreases in the rate of pupation, weight of pupa, rate of eclosion, fecundity and adult longevity of M. separata were observed in the Bt treatment regardless of GC inoculation during the two-year experiment. Also, when M. separata was fed with Bt maize, a significant prolongation of larval life and significant decreases in the pupal weight, fecundity and adult longevity of M. separata were observed when inoculated with GC. However, it was just the opposite for larvae fed with non-Bt maize that was inoculated with GC. The increased percentage of larval life-span, the decreased percentages of the food utilization, and the other indexes of reproduction, growth, and development of M. separata fed on Bt maize relative to non-Bt maize were all visibly lower when under GC inoculation in contrast to the CK. Discussion It is presumed that Bt maize has a marked adverse impact on M. separata development, reproduction and feeding, especially when in combination with the GC inoculation. Additionally, GC inoculation favors the effectiveness of Bt maize against M. separata larvae by reducing their food utilization ability, which negatively affects the development and reproduction of the armyworm. Thus, Bt maize inoculated with AMF (here, GC) can reduce the severe threats arising of armyworms, and hence the AMF inoculation may play an important ecological functions in the field of Bt maize ecosystem, with potentially high control efficiency for the target lepidopteran pests.

Funder

National Key Research and Development Program of China

Special Program for New Transgenic Variety Breeding of the Ministry of Science and Technology, China

State Public Industry (Agriculture) Research Project of China

Postgraduate Research &Practice Innovation Program of Jiangsu Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3